Development and verification of the signal to noise ratio for a layer of turbulence in a multi-layer atmosphere

Author:

Hamilton R. J.ORCID,Hart Michael

Abstract

Wide-field image correction in systems that look through the atmosphere generally requires a tomographic reconstruction of the turbulence volume to compensate for anisoplanatism. The reconstruction is conditioned by estimating the turbulence volume as a profile of thin homogeneous layers. We present the signal to noise ratio (SNR) of a layer, which quantifies how difficult a single layer of homogeneous turbulence is to detect with wavefront slope measurements. The signal is the sum of wavefront tip and tilt variances at the signal layer, and the noise is the sum of wavefront tip and tilt auto-correlations given the aperture shape and projected aperture separations at all non-signal layers. An analytic expression for layer SNR is found for Kolmogorov and von Kármán turbulence models, then verified with a Monte Carlo simulation. We show that the Kolmogorov layer SNR is a function of only layer Fried length, the spatio-angular sampling of the system, and normalized aperture separation at the layer. In addition to these parameters, the von Kármán layer SNR also depends on aperture size, and layer inner and outer scales. Due to the infinite outer scale, layers of Kolmogorov turbulence tend to have lower SNR than von Kármán layers. We conclude that the layer SNR is a statistically valid performance metric to be used when designing, simulating, operating, and quantifying the performance of any system that measures properties of layers of turbulence in the atmosphere from slope data.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3