Affiliation:
1. Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, E-20018 Donostia, Gipuzkoa, Spain
2. IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
Abstract
ABSTRACT
One of the main predictions of excursion set theory is that the clustering of dark matter haloes only depends on halo mass. However, it has been long established that the clustering of haloes also depends on other properties, including formation time, concentration, and spin; this effect is commonly known as halo assembly bias (HAB). We use a suite of gravity-only simulations to study the dependence of HAB on cosmology; these simulations cover cosmological parameters spanning 10σ around state-of-the-art best-fitting values, including standard extensions of the ΛCDM paradigm such as neutrino mass and dynamical dark energy. We find that, when studying the peak height-bias relation, the strength of HAB presents variations smaller than 0.05 dex across all cosmologies studied for concentration- and spin-selected haloes, letting us conclude that the dependence of HAB upon cosmology is negligible. We then study the dependence of galaxy assembly bias (i.e. the manifestation of HAB in galaxy clustering) on cosmology using subhalo abundance matching. We find that galaxy assembly bias also presents very small dependence upon cosmology (∼ 2 per cent–4 per cent of the total clustering); on the other hand, we find that the dependence of this signal on the galaxy formation parameters of our galaxy model is much stronger. Taken together, these results let us conclude that the dependence of halo and galaxy assembly bias on cosmology is practically negligible.
Funder
ERC
Barcelona Supercomputing Center
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献