Classification of pulsars with Dirichlet process Gaussian mixture model

Author:

Ay Fahrettin1ORCID,İnce Gökhan1,Kamaşak Mustafa E1,Ekşi K Yavuz2ORCID

Affiliation:

1. Istanbul Technical University, Faculty of Computer and Informatics, Computer Engineering Department, 34469, İstanbul, Turkey

2. Istanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, 34469, İstanbul, Turkey

Abstract

ABSTRACT Young isolated neutron stars (INSs) most commonly manifest themselves as rotationally powered pulsars that involve conventional radio pulsars as well as gamma-ray pulsars and rotating radio transients. Some other young INS families manifest themselves as anomalous X-ray pulsars and soft gamma-ray repeaters that are commonly accepted as magnetars, i.e. magnetically powered neutron stars with decaying super-strong fields. Yet some other young INSs are identified as central compact objects and X-ray dim isolated neutron stars that are cooling objects powered by their thermal energy. Older pulsars, as a result of a previous long episode of accretion from a companion, manifest themselves as millisecond pulsars and more commonly appear in binary systems. We use Dirichlet process Gaussian mixture model (DPGMM), an unsupervised machine learning algorithm, for analysing the distribution of these pulsar families in the parameter space of period and period derivative. We compare the average values of the characteristic age, magnetic dipole field strength, surface temperature, and transverse velocity of all discovered clusters. We verify that DPGMM is robust and provide hints for inferring relations between different classes of pulsars. We discuss the implications of our findings for the magnetothermal spin evolution models and fallback discs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3