A Violation Information Recognition Method of Live-Broadcasting Platform Based on Machine Learning Technology

Author:

Shen Xiaoying1ORCID,Yuan Chao2ORCID

Affiliation:

1. Wuxi Professional College of Science and Technology, No. 8 Xinxi Road, Wuxi, Jiangsu 214000, China

2. School of Design, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China

Abstract

With the development of the live broadcast industry, security issues in the live broadcast process have become increasingly apparent. At present, the supervision of various live broadcast platforms is basically in a state of human supervision. Manpower supervision is mainly through user reporting and platform supervision measures. However, there are a large number of live broadcast rooms at the same time, and only relying on human supervision can no longer meet the monitoring needs of live broadcasts. Based on this situation, this study proposes a violation information recognition method of a live-broadcasting platform based on machine learning technology. By analyzing the similarities and differences between normal live broadcasts and violation live broadcasts, combined with the characteristics of violation image data, this study mainly detects human skin color and sensitive parts. A prominent feature of violation images is that they contain a large area of naked skin, and the ratio of the area of naked skin to the overall image area of the violation image will exceed the threshold. Skin color recognition plays a role in initial target positioning. The accuracy of skin color recognition is directly related to the recognition accuracy of the entire system, so skin color recognition is the most important part of violation information recognition. Although there are many effective skin color recognition technologies, the accuracy and stability of skin color recognition still need to be improved due to the influence of various external factors, such as light intensity, light source color, and physical equipment. When it is detected that the area of the skin color in the live screen exceeds the threshold, it is preliminarily determined to be a suspected violation video. In order to improve the recognition accuracy, it is necessary to detect sensitive parts of the suspected video. Naked female breasts are a very obvious feature in violation images. This study uses a chest feature extraction method to detect the chest in the image. When the recognition result is a violation image, it is determined that the live broadcast involves violation content. The machine learning algorithm is simple to implement, and the parameters are easy to adjust. The classifier training requires a short time and is suitable for live violation information recognition scenarios. The experimental results on the adopted data set show that the method used in this article can effectively detect videos with violation content. The recognition rate is as high as 85.98%, which is suitable for a real-life environment and has good practical significance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference42 articles.

1. Identifying nude pictures;D. A. Forsyth

2. Appearance-based nude image recognition;C. Y. Jeong

3. Implementation of high performance objectionable video classification system;H. Lee

4. A SOM based approach to skin recognition with application in real time system;D. Brown

5. Explicit image recognition using YCbCr space color model as skin recognition;J. Basilio

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3