The density distribution and physical origins of intermittency in supersonic, highly magnetized turbulence with diverse modes of driving

Author:

Beattie James R12ORCID,Mocz Philip34ORCID,Federrath Christoph15,Klessen Ralf S67ORCID

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611, Australia

2. Department of Astronomy and Astrophysics, University of California, Santa Cruz , 1156 High Street, Santa Cruz, CA 96054, USA

3. Department of Astrophysical Sciences, Princeton University , 4 Ivy Lane, Princeton, NJ 08544, USA

4. Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, CA 94550, USA

5. Australian Research Council Centre of Excellence in All Sky Astrophysics (ASTRO3D) , Canberra, ACT 2611, Australia

6. Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg , Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany

7. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg , Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany

Abstract

ABSTRACT The probability density function (PDF) of the logarithmic density contrast, s = ln (ρ/ρ0), with gas density ρ and mean density ρ0, for hydrodynamical supersonic turbulence is well known to have significant non-Gaussian (intermittent) features that monotonically increase with the turbulent Mach number, $\mathcal {M}$. By studying the mass- and volume-weighted s-PDF for an ensemble of 36 sub-to-trans-Alfv́enic mean-field, supersonic, isothermal turbulence simulations with different modes of driving, relevant to molecular gas in the cool interstellar medium, we show that a more intricate picture emerges for the non-Gaussian nature of s. Using four independent measures of the non-Gaussian components, we find hydrodynamical-like structure in the highly magnetized plasma for $\mathcal {M} \lesssim 4$. However, for $\mathcal {M} \gtrsim 4$, the non-Gaussian signatures disappear, leaving approximately Gaussian s-statistics – exactly the opposite of hydrodynamical turbulence in the high-$\mathcal {M}$ limit. We also find that the non-Gaussian components of the PDF increase monotonically with more compressive driving modes. To understand the $\mathcal {M} \lesssim 4$ non-Gaussian features, we use one-dimensional pencil beams to explore the dynamics along and across the large-scale magnetic field, $\mathrm{{\boldsymbol {\mathit {B}}}}_0$. We discuss kinetic, density, and magnetic field fluctuations from the pencil beams, and identify physical sources of non-Gaussian components to the PDF as single, strong shocks coupled to fast magnetosonic compressions that form along $\mathrm{{\boldsymbol {\mathit {B}}}}_0$. We discuss the Gaussianization of the $\mathcal {M} \gtrsim 4$s-fields through the lens of two phenomenologies: the self-similarity of the s-field and homogenization of the dynamical time-scales between the over- and underdense regions in the compressible gas.

Funder

Australian National University

NASA

Australian Research Council

German Research Foundation

ERC

Australian National Computational Infrastructure

ANU

University of Chicago

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3