The relation between the turbulent Mach number and observed fractal dimensions of turbulent clouds

Author:

Beattie James R1ORCID,Federrath Christoph1,Klessen Ralf S23,Schneider Nicola4ORCID

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

2. Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany

3. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany

4. I. Physik. Institut, University of Cologne, D-50937 Cologne, Germany

Abstract

Abstract Supersonic turbulence is a key player in controlling the structure and star formation potential of molecular clouds (MCs). The three-dimensional (3D) turbulent Mach number, $\operatorname{\mathcal {M}}$, allows us to predict the rate of star formation. However, determining Mach numbers in observations is challenging because it requires accurate measurements of the velocity dispersion. Moreover, observations are limited to two-dimensional (2D) projections of the MCs and velocity information can usually only be obtained for the line-of-sight component. Here we present a new method that allows us to estimate $\operatorname{\mathcal {M}}$ from the 2D column density, Σ, by analysing the fractal dimension, $\mathcal {D}$. We do this by computing $\mathcal {D}$ for six simulations, ranging between 1 and 100 in $\operatorname{\mathcal {M}}$. From this data we are able to construct an empirical relation, $\log \operatorname{\mathcal {M}}(\mathcal {D}) = \xi _1(\operatorname{erfc}^{-1} [(\mathcal {D}-\operatorname{\mathcal {D}_\text{min}})/\Omega ] + \xi _2),$ where $\operatorname{erfc}^{-1}$ is the inverse complimentary error function, $\operatorname{\mathcal {D}_\text{min}}= 1.55 \pm 0.13$ is the minimum fractal dimension of Σ, Ω = 0.22 ± 0.07, ξ1 = 0.9 ± 0.1, and ξ2 = 0.2 ± 0.2. We test the accuracy of this new relation on column density maps from Herschel observations of two quiescent subregions in the Polaris Flare MC, ‘saxophone’ and ‘quiet’. We measure $\operatorname{\mathcal {M}}\sim 10$ and $\operatorname{\mathcal {M}}\sim 2$ for the subregions, respectively, which are similar to previous estimates based on measuring the velocity dispersion from molecular line data. These results show that this new empirical relation can provide useful estimates of the cloud kinematics, solely based upon the geometry from the column density of the cloud.

Funder

Australian Research Council

Deutsche Forschungsgemeinschaft

Government of Western Australia

Australian National University

University of Chicago

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3