Great balls of FIRE II: The evolution and destruction of star clusters across cosmic time in a Milky Way-mass galaxy

Author:

Rodriguez Carl L12ORCID,Hafen Zachary3ORCID,Grudić Michael Y4ORCID,Lamberts Astrid56ORCID,Sharma Kuldeep1,Faucher-Giguère Claude-André78ORCID,Wetzel Andrew9ORCID

Affiliation:

1. McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USA

2. Department of Physics and Astronomy, University of North Carolina at Chapel Hill , 120 E. Cameron Ave, Chapel Hill, NC 27599, USA

3. Department of Physics and Astronomy, University of California Irvine , CA 92697, USA

4. Carnegie Observatories , 813 Santa Barbara St, Pasadena, CA 91101, USA

5. Laboratoire Lagrange, Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS 06300, France

6. Laboratoire Artemis, Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS 06300, France

7. Department of Physics & Astronomy, Northwestern University , Evanston, IL 60208, USA

8. Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University , Evanston, IL 60208, USA

9. Department of Physics & Astronomy, University of California , Davis, CA 95616, USA

Abstract

ABSTRACTThe current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.

Funder

National Science Foundation

Charles E. Kaufman Foundation

CIERA

NASA

Centre National de la Recherche Scientifique

ANR

STScI

JTF

GBMF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3