Efficient radial migration by giant molecular clouds in the first several hundred Myr after the stellar birth

Author:

Fujimoto Yusuke12ORCID,Inutsuka Shu-ichiro3,Baba Junichi45

Affiliation:

1. Department of Computer Science and Engineering, University of Aizu , Tsuruga Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

2. Earth and Planets Laboratory, Carnegie Institution for Science , 5241 Broad Branch Road, NW, Washington, DC 20015, USA

3. Department of Physics, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

4. Kagoshima University, Graduate School of Science and Engineering , Kagoshima 890-0065, Japan

5. National Astronomical Observatory of Japan , Mitaka, Tokyo 181-8588, Japan

Abstract

ABSTRACT Stars in the Galactic disc, including the Solar system, have deviated from their birth orbits and have experienced radial mixing and vertical heating. By performing hydrodynamical simulations of a galactic disc, we investigate how much tracer particles, which are initially located in the disc to mimic newborn stars and the thin and thick disc stars, are displaced from initial near-circular orbits by gravitational interactions with giant molecular clouds (GMCs). To exclude the influence of other perturbers that can change the stellar orbits, such as spiral arms and the bar, we use an axisymmetric form for the entire galactic potential. First, we investigate the time evolution of the radial and vertical velocity dispersion σR and σz by comparing them with a power-law relation of σ ∝ tβ. Although the exponents β decrease with time, they keep large values of 0.3 ∼ 0.6 for 1 Gyr, indicating fast and efficient disc heating. Next, we find that the efficient stellar scattering by GMCs also causes a change in angular momentum for each star and, therefore, radial migration. This effect is more pronounced in newborn stars than old disc stars; nearly 30 per cent of stars initially located on the galactic mid-plane move more than 1 kpc in the radial direction for 1 Gyr. The dynamical heating and radial migration drastically occur in the first several hundred Myr. As the amplitude of the vertical oscillation increases, the time spent in the galactic plane, where most GMCs are distributed, decreases, and the rate of an increase in the heating and migration slows down.

Funder

JSPS

National Astronomical Observatory of Japan

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3