The role of the turbulence driving mode for the initial mass function

Author:

Mathew Sajay Sunny1ORCID,Federrath Christoph12ORCID,Seta Amit1ORCID

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611, Australia

2. Australian Research Council Centre of Excellence in All Sky Astrophysics (ASTRO3D) , Canberra, ACT 2611, Australia

Abstract

ABSTRACT Turbulence is a critical ingredient for star formation, yet its role for the initial mass function (IMF) is not fully understood. Here we perform magnetohydrodynamical (MHD) simulations of star cluster formation including gravity, turbulence, magnetic fields, stellar heating, and outflow feedback to study the influence of the mode of turbulence driving on IMF. We find that simulations that employ purely compressive turbulence driving (COMP) produce a higher fraction of low-mass stars as compared to simulations that use purely solenoidal driving (SOL). The characteristic (median) mass of the sink particle (protostellar) distribution for COMP is shifted to lower masses by a factor of ∼1.5 compared to SOL. Our simulation IMFs capture the important features of the observed IMF form. We find that turbulence-regulated theories of the IMF match our simulation IMFs reasonably well in the high-mass and low-mass range, but underestimate the number of very low-mass stars, which form towards the later stages of our simulations and stop accreting due to dynamical interactions. Our simulations show that for both COMP and SOL, the multiplicity fraction is an increasing function of the primary mass, although the multiplicity fraction in COMP is higher than that of SOL for any primary mass range. We find that binary mass ratio distribution is independent of the turbulence driving mode. The average specific angular momentum of the sink particles in SOL is a factor of 2 higher than that for COMP. Overall, we conclude that the turbulence driving mode plays a significant role in shaping the IMF.

Funder

Australian Research Council

University of Chicago

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3