The statistical properties of stars at redshift, z = 5, compared with the present epoch

Author:

Bate Matthew R1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Exeter , Stocker Road, Exeter EX4 4QL, UK

Abstract

ABSTRACT We report the statistical properties of stars and brown dwarfs obtained from three radiation hydrodynamical simulations of star cluster formation with metallicities of 1, 1/10, and 1/100 of the solar value. The star-forming clouds are subjected to cosmic microwave background radiation that is appropriate for star formation at a redshift z = 5. The results from the three calculations are compared to each other, and to similar previously published calculations that had levels of background radiation appropriate for present-day (z = 0) star formation. Each of the calculations treats dust and gas temperatures separately and includes a thermochemical model of the diffuse interstellar medium. We find that whereas the stellar mass distribution is insensitive to the metallicity for present-day star formation, at z = 5 the characteristic stellar mass increases with increasing metallicity and the mass distribution has a deficit of brown dwarfs and low-mass stars at solar metallicity compared to the Galactic initial mass function. We also find that the multiplicity of M-dwarfs decreases with increasing metallicity at z = 5. These effects are a result of metal-rich gas being unable to cool to as low temperatures at z = 5 compared to at z = 0 due to the hotter cosmic microwave background radiation, which inhibits fragmentation at high densities.

Funder

European Research Council

Information Technology Center, Nagoya University

Science and Technology Facilities Council

Center for High Performance Computing

Department for Business, Innovation and Skills

BIS

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First Light and Reionization Epoch Simulations (flares) – XIV. The Balmer/4000 Å breaks of distant galaxies;Monthly Notices of the Royal Astronomical Society;2023-11-27

2. The metallicity dependence of the stellar initial mass function;Monthly Notices of the Royal Astronomical Society;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3