forge: the f(R)-gravity cosmic emulator project – I. Introduction and matter power spectrum emulator

Author:

Arnold Christian1ORCID,Li Baojiu1ORCID,Giblin Benjamin2ORCID,Harnois-Déraps Joachim234,Cai Yan-Chuan2

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

2. Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh , Blackford Hill, Edinburgh, EH9 3JH, UK

3. School of Mathematics, Statistics and Physics, Newcastle University , Herschel Building, Newcastle-upon-Tyne NE1 7RU, UK

4. Astrophysics Research Institute, Liverpool John Moores University , 146 Brownlow Hill, Liverpool L3 5RF, UK

Abstract

ABSTRACT We present a large suite of cosmological simulations, the forge (F-of-R Gravity Emulator) simulation suite, which is designed to build accurate emulators for cosmological observables in galaxy clustering, weak gravitational lensing, and galaxy clusters for the f(R)-gravity model. A total of 200 simulations explore the cosmological parameter space around a standard Planck cosmology with a Latin hypercube, for 50 combinations of $\bar{f}_{R0}$, Ωm, σ8, and h with all other parameters fixed. For each parameter combination, or node, we ran four independent simulations, one pair using 10243 particles in $500\, h^{-1}\, \mathrm{Mpc}$ simulation boxes to cover small scales, and another pair using 5123 simulation particles in $1.5\, h^{-1}\, \mathrm{Gpc}$ boxes for larger scales. Each pair of initial conditions is selected such that sample variance on large scales is minimized on average. In this work we present an accurate emulator for the matter power spectrum in f(R) gravity trained on forge. We have verified, using the cross-validation technique, that the emulator accuracy is better than $2.5{{\, \rm per\, cent}}$ for the majority of nodes, particularly around the centre of the explored parameter space, up to scales of $k = 10\, h \, \mathrm{Mpc}^{-1}$. We have also checked the power spectrum emulator against simulations that are not part of our training set and found excellent agreement. Due to its high accuracy on small scales, the forge matter power spectrum emulator is well suited for weak-lensing analysis and can play a key tool in constraining f(R) gravity using current and future observational data.

Funder

European Research Council

Science and Technology Facilities Council

Royal Society

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3