Constraining modified gravity with weak-lensing peaks

Author:

Davies Christopher T1,Harnois-Déraps Joachim2ORCID,Li Baojiu3ORCID,Giblin Benjamin4ORCID,Hernández-Aguayo César56ORCID,Paillas Enrique78ORCID

Affiliation:

1. University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität , Scheinerstr. 1, D-81679 Munich , Germany

2. School of Mathematics, Statistics and Physics, Newcastle University , Herschel Building, NE1 7RU, Newcastle-upon-Tyne , UK

3. Department of Physics, Institute for Computational Cosmology, Durham University , South Road, Durham DH1 3LE , UK

4. Institute for Astronomy, Scottish Universities Physics Alliance, University of Edinburgh , Blackford Hill EH9 3HJ, Scotland , UK

5. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, D-85748 Garching , Germany

6. Excellence Cluster ORIGINS , Boltzmannstrasse 2, D-85748 Garching , Germany

7. Waterloo Centre for Astrophysics, University of Waterloo , Waterloo, ON N2L 3G1 , Canada

8. Department of Physics and Astronomy, University of Waterloo , Waterloo, ON N2L 3G1 , Canada

Abstract

ABSTRACT It is well established that maximizing the information extracted from upcoming and ongoing stage-IV weak-lensing surveys requires higher order summary statistics that complement the standard two-point statistics. In this work, we focus on weak-lensing peak statistics to test two popular modified gravity models, $f(R)$ and nDGP, using the forge and bridge weak-lensing simulations, respectively. From these simulations, we measure the peak statistics as a function of both cosmological and modified gravity parameters simultaneously. Our findings indicate that the peak abundance is sensitive to the strength of modified gravity, while the peak two-point correlation function is sensitive to the nature of the screening mechanism in a modified gravity model. We combine these simulated statistics with a Gaussian Process Regression emulator and a Gaussian likelihood to generate stage-IV forecast posterior distributions for the modified gravity models. We demonstrate that, assuming small scales can be correctly modelled, peak statistics can be used to distinguish general relativity from $f(R)$ and nDGP models at the 2σ level with a stage-IV survey area of $300$ and $1000 \, \rm {deg}^2$, respectively. Finally, we show that peak statistics can constrain $\log _{10}\left(|f_{R0}|\right) = -6$ per cent to 2 per cent precision, and $\log _{10}(H_0 r_c) = 0.5$ per cent to 25 per cent precision.

Funder

STFC

DFG

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3