Laboratory study on the fullerene–PAH-derived cluster cations in the gas phase

Author:

Zhen Junfeng12,Zhang Weiwei3,Yang Yuanyuan124,Zhu Qingfeng12

Affiliation:

1. CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026, China

2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China

3. Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA

4. CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

ABSTRACT It is possible that fullerene–polycyclic aromatic hydrocarbon (PAH) clusters or associations of fullerenes with PAHs contain a large fraction of interstellar fullerenes in the interstellar medium. Herein, we report the formation and photofragmentation behaviour of fullerene–PAH derivatives, fullerene/9-vinylanthracene (C16H12) and fullerene/9-methylanthracene (C15H12) cluster cations. Experiments are carried out using a quadrupole ion trap in combination with time-of-flight mass spectrometry in the gas phase. The results show that fullerene (C60)/9-vinylanthracene (e.g. [(C16H12)3C60]+), fullerene (C56 and C58)/9-vinylanthracene (e.g. [(C16H12)4C56]+ and [(C16H12)4C58]+), fullerene (C60)/9-methylanthracene (e.g. [(C15H12)3C60]+), and fullerene (C56 and C58)/9-methylanthracene (e.g. [(C15H12)4C56]+ and [(C15H12)4C58]+) cluster cations, i.e. large fullerene-derived molecules, are formed in the gas phase through the ion–molecule reaction pathway. With irradiation, all fullerene–PAH-derived cluster cations lose their monomolecular groups without other fragmentation channels (e.g. dehydrogenation). The structure of newly formed fullerene–PAH-derived cluster cations and the bond energy for these adduction formation pathways are investigated with theoretical calculations. The obtained results provide a general molecular growth route towards large fullerene–PAH derivatives (e.g. large fullerene-derived molecules) with functional PAHs in a bottom-up formation process and insights into the effect of functional groups (e.g. vinyl, –C2H3, and methyl, –CH3) on their formation and photoevolution behaviours. In addition, the fullerene–PAH-derived clusters (from 83 to 170 atoms in total, or ∼2 nm in size) offer a good model of carbon dust grains, and the relevance to the nanometre-sized carbon dust grain in space is briefly discussed.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3