Affiliation:
1. Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University , Nanning 530004 , China
Abstract
ABSTRACT
Fullerenes, including C60 and C70, have been detected in various astronomical environments. Understanding how their structures evolve over time is essential for gaining insights into their life cycle and making further observations. To address this, we conducted reactive molecular dynamics simulations to investigate the evolution of fullerenes in the circumstellar envelopes surrounding carbon-rich asymptotic giant branch stars. Our simulations employed a bottom-up chemistry scheme, wherein fullerenes grow by absorbing and condensing small carbon-based molecules. The results revealed the formation of different structures through heterogeneous reactions based on hydrogen concentration, leading to the emergence of onion-like nanostructures or single-layer fullerenes. To examine the impact of these structural changes on the infrared emission characteristics of fullerenes, we performed quantum chemical calculations. The results indicate that as fullerenes grow larger, additional emission features are introduced in the infrared spectrum. Moreover, two-layered fullerenes show noticeable blueshift or weakening effects on the bands associated with out-of-plane vibration modes.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献