White dwarf pollution by hydrated planetary remnants: hydrogen and metals in WD J204713.76–125908.9

Author:

Hoskin Matthew J12ORCID,Toloza Odette1,Gänsicke Boris T12ORCID,Raddi Roberto34ORCID,Koester Detlev5,Pala Anna F16,Manser Christopher J1ORCID,Farihi Jay7ORCID,Belmonte Maria Teresa8,Hollands Mark1,Gentile Fusillo Nicola16,Swan Andrew7ORCID

Affiliation:

1. Department of Physics, University of Warwick, Coventry CV4 7AL, UK

2. Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK

3. Dr. Remeis-Sternwarte & ECAP, Friedrich-Alexander Universität Erlangen-Nürnberg, Sternwartstr 7, D-96049 Bamberg, Germany

4. Departament de Fìsica, Universitat Politécnica de Catalunya, c/Esteve Terrades 5, E-08860 Castelldefels, Spain

5. Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität, D-24118 Kiel, Germany

6. European Southern Observatory, Karl Schwarzschild Straße 2, Garching D-85748, Germany

7. Department of Physics & Astronomy, University College London, London WC1E 6BT, UK

8. Blackett Laboratory, Physics Department, Imperial College London, London SW7 2AZ, UK

Abstract

ABSTRACT WD J204713.76–125908.9 is a new addition to the small class of white dwarfs with helium-dominated photospheres that exhibit strong Balmer absorption lines and atmospheric metal pollution. The exceptional abundances of hydrogen observed in these stars may be the result of accretion of water-rich rocky bodies. We obtained far-ultraviolet and optical spectroscopy of WD J204713.76–125908.9 using the Cosmic Origin Spectrograph on-board the Hubble Space Telescope and X-shooter on the Very Large Telescope, and identify photospheric absorption lines of nine metals: C, O, Mg, Si, P, S, Ca, Fe, and Ni. The abundance ratios are consistent with the steady-state accretion of exo-planetesimal debris rich in the volatile elements carbon and oxygen, and the transitional element sulphur, by factors of 17, 2, and 4, respectively, compared to the bulk Earth. The parent body has a composition akin to Solar system carbonaceous chondrites, and the inferred minimum mass, 1.6 × 1020 g, is comparable to an asteroid 23 km in radius. We model the composition of the disrupted parent body, finding from our simulations a median water mass fraction of 8 per cent.

Funder

Science and Technology Facilities Council

Leverhulme Trust

H2020 European Research Council

California Department of Fish and Game

Generalitat de Catalunya

H2020 Marie Skłodowska-Curie Actions

National Aeronautics and Space Administration

University of Hawaii

Johns Hopkins University

Durham University

University of Edinburgh

Queen's University Belfast

Smithsonian Astrophysical Observatory

National Central University

Space Telescope Science Institute

Eötvös Loránd Tudományegyetem

Los Alamos National Laboratory

Gordon and Betty Moore Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Star–Planet Composition Connection;Annual Review of Astronomy and Astrophysics;2024-09-13

2. The Chemistry of Extra-solar Materials from White Dwarf Planetary Systems;Reviews in Mineralogy and Geochemistry;2024-07-01

3. The Evolution and Delivery of Rocky Extra-Solar Materials to White Dwarfs;Reviews in Mineralogy and Geochemistry;2024-07-01

4. Seven white dwarfs with circumstellar gas discs II: tracing the composition of exoplanetary building blocks;Monthly Notices of the Royal Astronomical Society;2024-06-22

5. Modeling Circumstellar Gas Emission around a White Dwarf Using cloudy;The Astronomical Journal;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3