Abstract
Abstract
The chemical composition of an extrasolar planet is fundamental to its formation, evolution, and habitability. In this study, we explore a new way to measure the chemical composition of the building blocks of extrasolar planets by measuring the gas composition of the disrupted planetesimals around white dwarf stars. As a first attempt, we used the photoionization code Cloudy to model the circumstellar gas emission around white dwarf Gaia J0611−6931 under some simplified assumptions. We found that most of the emission lines are saturated, and the line ratios approach the ratios of thermal emission; therefore, only lower limits to the number density can be derived. Silicon is the best-constrained element in the circumstellar gas, and we derived a lower limit of 1010.3 cm−3. In addition, we placed a lower limit on the total amount of gas to be 1.8 × 1019 g. Further study is needed to better constrain the parameters of the gas disk and connect it to other white dwarfs with circumstellar gas absorption.
Publisher
American Astronomical Society