The SDSS/APOGEE catalogue of HgMn stars

Author:

Chojnowski S Drew1,Hubrig Swetlana2,Hasselquist Sten3,Beaton Rachael L4,Majewski Steven R5,García-Hernández D A67,DeColibus David1

Affiliation:

1. Apache Point Observatory and New Mexico State University, PO Box 59, Sunspot, NM 88349-0059, USA

2. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

3. Department of Physics and Astronomy, University of Utah, 115 1400 E, Salt Lake City, UT 84112, USA

4. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA

5. Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904-4325, USA

6. Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain

7. Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain

Abstract

ABSTRACT We report on H-band spectra of chemically peculiar Mercury–Manganese (HgMn) stars obtained via the SDSS/APOGEE survey. As opposed to other varieties of chemically peculiar stars such as classical Ap/Bp stars, HgMn stars lack strong magnetic fields and are defined by extreme overabundances of Mn, Hg, and other heavy elements. A satisfactory explanation for the abundance patterns remains to be determined, but low rotational velocity is a requirement and involvement in binary/multiple systems may be as well. The APOGEE HgMn sample currently consists of 269 stars that were identified among the telluric standard stars as those whose metallic absorption content is limited to or dominated by the H-band Mn ii lines. Due to the fainter magnitudes probed by the APOGEE survey as compared to past studies, only 9/269 stars in the sample were previously known as HgMn types. The 260 newly identified HgMn stars represents a more than doubling of the known sample. At least 32 per cent of the APOGEE sample are found to be binary or multiple systems, and from multi-epoch spectroscopy, we were able to determine orbital solutions for at least one component in 32 binaries. Many of the multilined systems include chemically peculiar companions, with noteworthy examples being the HgMn+Ap/Bp binary HD 5429, the HgMn+HgMn binary HD 298641, and the HgMn+Bp Mn + Am triple system HD 231263. As a further peculiarity, roughly half of the sample produces narrow emission in the C i 16895 Å line, with widths and radial velocities that match those of the Mn ii lines.

Funder

Alfred P. Sloan Foundation

U.S. Department of Energy

National Science Foundation

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3