An Interpretable Machine-learning Framework for Modeling High-resolution Spectroscopic Data*

Author:

Gully-Santiago MichaelORCID,Morley Caroline V.ORCID

Abstract

Abstract Comparison of échelle spectra to synthetic models has become a computational statistics challenge, with over 10,000 individual spectral lines affecting a typical cool star échelle spectrum. Telluric artifacts, imperfect line lists, inexact continuum placement, and inflexible models frustrate the scientific promise of these information-rich data sets. Here we debut an interpretable machine-learning framework blasé that addresses these and other challenges. The semiempirical approach can be viewed as “transfer learning”—first pretraining models on noise-free precomputed synthetic spectral models, then learning the corrections to line depths and widths from whole-spectrum fitting to an observed spectrum. The auto-differentiable model employs back-propagation, the fundamental algorithm empowering modern deep learning and neural networks. Here, however, the 40,000+ parameters symbolize physically interpretable line profile properties such as amplitude, width, location, and shape, plus radial velocity and rotational broadening. This hybrid data-/model-driven framework allows joint modeling of stellar and telluric lines simultaneously, a potentially transformative step forward for mitigating the deleterious telluric contamination in the near-infrared. The blasé approach acts as both a deconvolution tool and semiempirical model. The general-purpose scaffolding may be extensible to many scientific applications, including precision radial velocities, Doppler imaging, chemical abundances for Galactic archeology, line veiling, magnetic fields, and remote sensing. Its sparse-matrix architecture and GPU acceleration make blasé fast. The open-source PyTorch-based code blase includes tutorials, Application Programming Interface documentation, and more. We show how the tool fits into the existing Python spectroscopy ecosystem, demonstrate a range of astrophysical applications, and discuss limitations and future extensions.

Funder

NASA ∣ SMD ∣ Astrophysics Division

NASA ∣ Science Mission Directorate

NSF ∣ Directorate for Mathematical and Physical Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. gollum: An intuitive programmatic and visual interface for precomputed synthetic spectral model grids;Journal of Open Source Software;2024-08-09

2. A linearized approach to radial velocity extraction;Monthly Notices of the Royal Astronomical Society;2023-09-11

3. On the importance of disc chemistry in the formation of protoplanetary disc rings;Monthly Notices of the Royal Astronomical Society;2023-09-01

4. DSPS: Differentiable stellar population synthesis;Monthly Notices of the Royal Astronomical Society;2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3