Comparing energy and entropy formulations for cosmic ray hydrodynamics

Author:

Weber Matthias12,Thomas Timon1ORCID,Pfrommer Christoph1ORCID

Affiliation:

1. Leibniz-Institute for Astrophysics Potsdam (AIP) , An der Sternwarte 16, D-14482 Potsdam, Germany

2. Institut für Physik und Astronomie, Universität Potsdam , Karl-Liebknecht-Str. 24/25, D-14476 Golm, Germany

Abstract

ABSTRACT Cosmic rays (CRs) play an important role in many astrophysical systems. Acting on plasma scales to galactic environments, CRs are usually modelled as a fluid, using the CR energy density as the evolving quantity. This method comes with the flaw that the corresponding CR evolution equation is not in conservative form as it contains an adiabatic source term that couples CRs to the thermal gas. In the absence of non-adiabatic changes, instead evolving the CR entropy density is a physically equivalent option that avoids this potential numerical inconsistency. In this work, we study both approaches for evolving CRs in the context of magnetohydrodynamic (MHD) simulations using the massively parallel moving-mesh code Arepo. We investigate the performance of both methods in a sequence of shock-tube tests with various resolutions and shock Mach numbers. We find that the entropy-conserving scheme performs best for the idealized case of purely adiabatic CRs across the shock while both approaches yield similar results at lower resolution. In this set-up, both schemes operate well and almost independently of the shock Mach number. Taking active CR acceleration at the shock into account, the energy-based method proves to be numerically much more stable and significantly more accurate in determining the shock velocity, in particular at low resolution, which is more typical for astrophysical large-scale simulations. For a more realistic application, we simulate the formation of several isolated galaxies at different halo masses and find that both numerical methods yield almost identical results with differences far below common astrophysical uncertainties.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmic-ray confinement in radio bubbles by micromirrors;Monthly Notices of the Royal Astronomical Society;2024-06-25

2. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3