Shock-accelerated cosmic rays and streaming instability in the adaptive mesh refinement code Ramses

Author:

Dubois Yohan,Commerçon Benoît,Marcowith Alexandre,Brahimi Loann

Abstract

Cosmic rays (CRs) are thought to play a dynamically important role in several key aspects of galaxy evolution, including the structure of the interstellar medium, the formation of galactic winds, and the non-thermal pressure support of halos. We introduce a numerical model solving for the CR streaming instability and acceleration of CRs at shocks with a fluid approach in the adaptive mesh refinement code RAMSES. CR streaming is solved with a diffusion approach and its anisotropic nature is naturally captured. We introduce a shock finder for the RAMSES code that automatically detects shock discontinuities in the flow. Shocks are the loci for CR injection, and their efficiency of CR acceleration is made dependent on the upstream magnetic obliquity according to the diffuse shock acceleration mechanism. We show that the shock finder accurately captures shock locations and estimates the shock Mach number for several problems. The obliquity-dependent injection of CRs in the Sedov solution leads to situations where the supernova bubble exhibits large polar caps (homogeneous background magnetic field), or a patchy structure of the CR distribution (inhomogeneous background magnetic field). Finally, we combine both accelerated CRs with streaming in a simple turbulent interstellar medium box, and show that the presence of CRs significantly modifies the structure of the gas.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Past activity of Sgr A is unlikely to affect the local cosmic-ray spectrum up to the TeV regime;Astronomy & Astrophysics;2024-08-27

2. A fluid approach to cosmic-ray modified shocks;Advances in Space Research;2024-07

3. Lyα emission as a sensitive probe of feedback-regulated LyC escape from dwarf galaxies;Monthly Notices of the Royal Astronomical Society;2024-06-28

4. The impact of cosmic rays on the interstellar medium and galactic outflows of Milky Way analogues;Monthly Notices of the Royal Astronomical Society;2024-04-22

5. The effect of cosmic rays on the observational properties of the CGM;Monthly Notices of the Royal Astronomical Society;2024-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3