Past activity of Sgr A is unlikely to affect the local cosmic-ray spectrum up to the TeV regime

Author:

Fournier M.,Fensch J.,Commerçon B.

Abstract

Context The presence of kiloparsec-sized bubble structures on both sides of the Galactic plane suggests active phases of Sgr A, the central supermassive black hole of the Milky Way in the last 1–6 Myr. We investigated the contribution of such events to the cosmic-ray (CR) flux measured in the solar neighborhood with numerical simulations. Aims. We evaluate whether the population of high-energy charged particles emitted by the Galactic center could be sufficient to significantly impact the CR flux measured in the solar neighborhood. Methods. We present a set of 3D magnetohydrodynamical simulations following the anisotropic propagation of CRs in a Milky Way-like Galaxy. We followed independent populations of CRs through time. We followed CRs originating from two different source types, namely supernovae and the Galactic center. To assess the evolution of the CR flux spectrum properties, we split these populations into two independent energy groups of 100 GeV and 10 TeV. Results. We find that the anisotropic nature of CR diffusion dramatically affects the amount of CR energy received in the solar neighborhood. The typical timescale required to observe measurable changes in the CR spectrum slope is of the order 10 Myr, largely surpassing estimated ages of the Fermi bubbles in the active galactic nuclei (AGN) jet-driven scenario. Conclusions. We conclude that a CR outburst from the Galactic center in the last few million years is unlikely have produced any observable feature in the local CR spectrum in the TeV regime within times consistent with current estimates of the age of the Fermi bubbles.

Funder

Institut des Origines de Lyon

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3