3D simulations of oxygen shell burning with and without magnetic fields

Author:

Varma Vishnu1,Müller Bernhard12ORCID

Affiliation:

1. School of Physics and Astronomy, 10 College Walk, Monash University, Clayton VIC 3800, Australia

2. ARC Centre of Excellence for Gravitational Wave Discovery – OzGrav, Monash University, Clayton, VIC 3800, Australia

Abstract

ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of convective oxygen and neon shell burning in a non-rotating $18\, \mathrm{M}_\odot$ star shortly before core collapse to study the generation of magnetic fields in supernova progenitors. We also run a purely hydrodynamic control simulation to gauge the impact of the magnetic fields on the convective flow and on convective boundary mixing. After about 17 convective turnover times, the magnetic field is approaching saturation levels in the oxygen shell with an average field strength of $\mathord {\sim }10^{10}\, \mathrm{G}$, and does not reach kinetic equipartition. The field remains dominated by small-to-medium scales, and the dipole field strength at the base of the oxygen shell is only $10^{9}\, \mathrm{G}$. The angle-averaged diagonal components of the Maxwell stress tensor mirror those of the Reynolds stress tensor, but are about one order of magnitude smaller. The shear flow at the oxygen–neon shell interface creates relatively strong fields parallel to the convective boundary, which noticeably inhibit the turbulent entrainment of neon into the oxygen shell. The reduced ingestion of neon lowers the nuclear energy generation rate in the oxygen shell and thereby slightly slows down the convective flow. Aside from this indirect effect, we find that magnetic fields do not appreciably alter the flow inside the oxygen shell. We discuss the implications of our results for the subsequent core-collapse supernova and stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects for a better understanding of magnetic fields in supernova progenitors.

Funder

ARC

NCI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shell mergers in the late stages of massive star evolution: new insight from 3D hydrodynamic simulations;Monthly Notices of the Royal Astronomical Society;2024-07-23

2. Fate of supernova progenitors in massive binary systems;Monthly Notices of the Royal Astronomical Society;2024-07-12

3. Nucleosynthesis in the Innermost Ejecta of Magnetorotational Supernova Explosions in Three Dimensions;The Astrophysical Journal;2024-07-01

4. Three-dimensional GRMHD simulations of rapidly rotating stellar core collapse;Monthly Notices of the Royal Astronomical Society;2024-06-04

5. 3D simulations of a neon burning convective shell in a massive star;Monthly Notices of the Royal Astronomical Society;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3