Nucleosynthesis in the Innermost Ejecta of Magnetorotational Supernova Explosions in Three Dimensions

Author:

Zha ShuaiORCID,Müller BernhardORCID,Powell JadeORCID

Abstract

Abstract Core-collapse supernova (CCSN) explosions powered by rotation and magnetic fields present an interesting astrophysical site for nucleosynthesis that potentially contributes to the production of r-process elements. Here we present yields of the innermost ejecta in 3D magnetorotational CCSN models simulated using the CoCoNuT-FMT code. Strong magnetic fields tap the rotational energy of the proto−neutron star and lead to earlier and more energetic (∼3 × 1051 erg) explosions than typical neutrino-driven CCSNe. Compared to a reference nonmagnetic model, the ejecta in the magnetorotational models have much more neutron-rich components with Y e down to ∼0.25. Our post-processing calculations with the reaction network SkyNet show significant production of weak r-process elements up to mass number ∼130. We find negligible differences in the synthesis of heavy elements between two magnetorotational models with different initial field strengths of 1010 and 1012 G, in accord with their similar explosion dynamics. The magnetorotational models produce about ∼0.19 and 0.14 M of radioactive 56Ni, on the low end of inferred hypernova nickel masses. The yields are publicly available at Zenodo (doi: 10.5281/zenodo.10578981) for comparison with stellar abundance patterns, inclusion in modeling galactic chemical evolution, and comparison with other yield calculations. Our results add to the yet-restricted corpus of nucleosynthesis yields from 3D magnetorotational supernova simulations and will help quantify yield uncertainties.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Department of Education and Training ∣ Australian Research Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3