Optimizing tomography for weak gravitational lensing surveys

Author:

Sipp Marvin1ORCID,Schäfer Björn Malte1,Reischke Robert23

Affiliation:

1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany

2. Department of Physics, Israel Institute of Technology, Technion, 3200003 Haifa, Israel

3. Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra’anana 4353701, Israel

Abstract

ABSTRACT The subject of this paper is optimization of weak lensing tomography: we carry out numerical minimization of a measure of total statistical error as a function of the redshifts of the tomographic bin edges by means of a Nelder–Mead algorithm in order to optimize the sensitivity of weak lensing with respect to different optimization targets. Working under the assumption of a Gaussian likelihood for the parameters of a w0wa CDM (cold dark matter) model and using euclid’s conservative survey specifications, we compare an equipopulated, equidistant, and optimized bin setting and find that in general the equipopulated setting is very close to the optimal one, while an equidistant setting is far from optimal and also suffers from the ad hoc choice of a maximum redshift. More importantly, we find that nearly saturated information content can be gained using already few tomographic bins. This is crucial for photometric redshift surveys with large redshift errors. We consider a large range of targets for the optimization process that can be computed from the parameter covariance (or equivalently, from the Fisher matrix), extend these studies to information entropy measures such as the Kullback–Leibler divergence and conclude that in many cases equipopulated binning yields results close to the optimum, which we support by analytical arguments.

Funder

Karlsruhe Institute of Technology

Israel Science Foundation

Universidad del Valle

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Tomographic Binning of 3 × 2 pt Lens Samples: Neural Network Classifiers and Optimal Bin Assignments;The Astrophysical Journal;2023-06-01

2. Testing modified (Horndeski) gravity by combining intrinsic galaxy alignments with cosmic shear;Monthly Notices of the Royal Astronomical Society;2022-01-14

3. Intrinsic and extrinsic gravitational flexions;Monthly Notices of the Royal Astronomical Society;2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3