Improved Tomographic Binning of 3 × 2 pt Lens Samples: Neural Network Classifiers and Optimal Bin Assignments

Author:

Moskowitz IreneORCID,Gawiser EricORCID,Bault AbbyORCID,Broussard AdamORCID,Newman Jeffrey A.ORCID,Zuntz JoeORCID,

Abstract

Abstract Large imaging surveys, such as the Legacy Survey of Space and Time, rely on photometric redshifts and tomographic binning for 3 × 2 pt analyses that combine galaxy clustering and weak lensing. In this paper, we propose a method for optimizing the tomographic binning choice for the lens sample of galaxies. We divide the CosmoDC2 and Buzzard simulated galaxy catalogs into a training set and an application set, where the training set is nonrepresentative in a realistic way, and then estimate photometric redshifts for the application sets. The galaxies are sorted into redshift bins covering equal intervals of redshift or comoving distance, or with an equal number of galaxies in each bin, and we consider a generalized extension of these approaches. We find that bins of equal comoving distance produce the highest dark energy figure of merit of the initial binning choices, but that the choice of bin edges can be further optimized. We then train a neural network classifier to identify galaxies that are either highly likely to have accurate photometric redshift estimates or highly likely to be sorted into the correct redshift bin. The neural network classifier is used to remove poor redshift estimates from the sample, and the results are compared to the case when none of the sample is removed. We find that the neural network classifiers are able to improve the figure of merit by ∼13% and are able to recover ∼25% of the loss in the figure of merit that occurs when a nonrepresentative training sample is used.

Funder

U.S. Department of Energy

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3