Rapid expansion of red giant stars during core helium flash by waves propagation to the envelope and implications to exoplanets

Author:

Bear Ealeal1,Merlov Ariel1,Arad Yarden1,Soker Noam12ORCID

Affiliation:

1. Department of Physics, Technion – Israel Institute of Technology, Haifa 3200003, Israel

2. Guangdong Technion Israel Institute of Technology, Guangdong Province, Shantou 515069, China

Abstract

ABSTRACT We assume that the strong convection during core helium flash of low mass red giant branch (RBG) stars excite waves that propagate to the envelope, and find that the energy that these waves deposit in the envelope causes envelope expansion and brightening. We base our assumption and the estimate of the waves’ energy on studies that explored such a process due to the vigorous core convection of massive stars just before they experience a core collapse supernova explosion. Using the stellar evolutionary code mesa, we find that the waves’ energy causes an expansion within few years by tens to hundreds solar radii. Despite the large brightening, we expect the increase in radius and luminosity to substantially enhance mass-loss rate and dust formation. The dust shifts the star to become much redder (to the infrared), and the star might actually become fainter in the visible. The overall appearance is of a faint red transient event that lasts for months to few years. We suggest that in some cases envelope expansion might lead stars that are about to leave the RGB to engulf exoplanets. The extended envelope has a smaller binding energy to a degree that allows planets of several Jupiter masses or more and brown dwarfs to survive the common envelope evolution. We suggest this scenario to account for the planet orbiting the white dwarf (WD) WD 1856+534 (TIC 267574918) and for the WD–brown dwarf binary system ZTFJ003855.0+203025.5.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3