Abstract
Abstract
About ten percent of Sun-like (1–2 M
⊙) stars will engulf a 1–10 M
J planet as they expand during the red giant branch (RGB) or asymptotic giant branch (AGB) phase of their evolution. Once engulfed, these planets experience a strong drag force in the star’s convective envelope and spiral inward, depositing energy and angular momentum. For these mass ratios, the inspiral takes ∼10–102 yr (∼102–103 orbits); the planet undergoes tidal disruption at a radius of ∼1 R
⊙. We use the Modules for Experiments in Stellar Astrophysics (MESA) software instrument to track the stellar response to the energy deposition while simultaneously evolving the planetary orbit. For RGB stars, as well as AGB stars with M
p ≲ 5 M
J planets, the star responds quasi-statically but still brightens measurably on a timescale of years. In addition, asteroseismic indicators, such as the frequency spacing or rotational splitting, differ before and after engulfment. For AGB stars, engulfment of an M
p ≳ 5 M
J planet drives supersonic expansion of the envelope, causing a bright, red, dusty eruption similar to a “luminous red nova.” Based on the peak luminosity, color, duration, and expected rate of these events, we suggest that engulfment events on the AGB could be a significant fraction of low-luminosity red novae in the Galaxy. We do not find conditions where the envelope is ejected prior to the planet’s tidal disruption, complicating the interpretation of short-period giant planets orbiting white dwarfs as survivors of common envelope evolution.
Funder
NSF ∣ Directorate for Mathematical and Physical Sciences
Simons Foundation
Heising-Simons Foundation
New York Space Grant Consortium
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献