The morpho-kinematics of the circumstellar envelope around the AGB star EP Aqr

Author:

Hoai D T12,Nhung P T1,Tuan-Anh P1ORCID,Darriulat P1,Diep P N1ORCID,Le Bertre T3,Phuong N T1,Thai T T1,Winters J M4

Affiliation:

1. Department of Astrophysics, Vietnam National Space Center (VNSC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

2. Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

3. LERMA, UMR 8112, CNRS and Observatoire de Paris, PSL Research University, 61 av. de l’Observatoire, F-75014 Paris, France

4. IRAM, 300 rue de la Piscine, Domaine Universitaire, F-38406 St. Martin d’Hères, France

Abstract

ABSTRACT ALMA observations of CO(1–0) and CO(2–1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich asymptotic giant branch star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data cube into a low-velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density, and the flux of matter. A mass-loss rate of (1.6 ± 0.4)×10−7 solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass-loss mechanism, but cannot choose among them with confidence.

Funder

Alberta Livestock and Meat Agency

European School of Oncology

National Science Foundation

National Institutes of Natural Sciences

National Research Council Canada

Korea Astronomy and Space Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3