Molecules, shocks, and disk in the axi-symmetric wind of the MS-type AGB star RS Cancri

Author:

Winters J. M.ORCID,Hoai D. T.ORCID,Wong K. T.ORCID,Kim W.-J.ORCID,Nhung P. T.ORCID,Tuan-Anh P.ORCID,Lesaffre P.ORCID,Darriulat P.,Le Bertre T.ORCID

Abstract

Context. The latest evolutionary phases of low- and intermediate-mass stars are characterized by complex physical processes like turbulence, convection, stellar pulsations, magnetic fields, condensation of solid particles, and the formation of massive outflows that inject freshly produced heavy elements and dust particles into the interstellar medium. Aims. By investigating individual objects in detail, we wish to analyze and disentangle the effects of the interrelated physical processes on the structure of the wind-forming regions around them. Methods. We use the Northern Extended Millimeter Array to obtain spatially and spectrally resolved observations of the semi-regular asymptotic giant branch (AGB) star RS Cancri and apply detailed 3D reconstruction modeling and local thermodynamic equilibrium radiative transfer calculations in order to shed light on the morpho-kinematic structure of its inner, wind-forming environment. Results. We detect 32 lines of 13 molecules and isotopologs (CO, SiO, SO, SO2, H2O, HCN, PN), including several transitions from vibrationally excited states. HCN, H13CN, and millimeter vibrationally excited H2O, SO, 34SO, SO2, and PN are detected for the first time in RS Cnc. Evidence for rotation is seen in HCN, SO, SO2, and SiO(v = 1). From CO and SiO channel maps, we find an inner, equatorial density enhancement, and a bipolar outflow structure with a mass-loss rate of 1 × 10−7 Myr−1 for the equatorial region and of 2 × 10−7 Myr−1 for the polar outflows. The 12CO/13CO ratio is measured to be ~20 on average, 24 ± 2 in the polar outflows and 19 ± 3 in the equatorial region. We do not find direct evidence of a companion that might explain this kind of kinematic structure, and explore the possibility that a magnetic field might be the cause of it. The innermost molecular gas is influenced by stellar pulsation and possibly by convective cells that leave their imprint on broad wings of certain molecular lines, such as SiO and SO. Conclusions. RS Cnc is one of the few nearby, low-mass-loss-rate, oxygen-rich AGB stars with a wind displaying both an equatorial disk and bipolar outflows. Its orientation with respect to the line of sight is particularly favorable for a reliable study of its morpho-kinematics. Nevertheless, the mechanism causing early spherical symmetry breaking remains uncertain, calling for additional high spatial- and spectral-resolution observations of the emission of different molecules in different transitions, along with more thorough investigation of the coupling among the different physical processes at play.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference134 articles.

1. Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., & Andrae R. 2021, VizieR Online Data Catalog: I/352

2. Rotational spectrum of the H216O molecule in the (010) excited vibrational state

3. A millimeter-wavelength survey of S stars for mass loss and chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3