An active galactic nucleus recognition model based on deep neural network

Author:

Chen Bo Han1,Goto Tomotsugu12,Kim Seong Jin12ORCID,Wang Ting Wen2ORCID,Santos Daryl Joe D2,Ho Simon C-C2,Hashimoto Tetsuya13ORCID,Poliszczuk Artem4,Pollo Agnieszka45,Trippe Sascha6,Miyaji Takamitsu78ORCID,Toba Yoshiki91011,Malkan Matthew12,Serjeant Stephen13,Pearson Chris141516ORCID,Hwang Ho Seong17ORCID,Kim Eunbin17ORCID,Shim Hyunjin18,Lu Ting Yi2ORCID,Hsiao Yu-Yang2,Huang Ting-Chi1920ORCID,Herrera-Endoqui Martín7,Bravo-Navarro Blanca721,Matsuhara Hideo1920

Affiliation:

1. Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan

2. Institute of Astronomy, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan

3. Centre for Informatics and Computation in Astronomy (CICA), National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

4. National Centre for Nuclear Research, ul.Pasteura 7, PL-02-093 Warsaw, Poland

5. Astronomical Observatory of the Jagiellonian University, ul.Orla 171, PL-30-244 Krakow, Poland

6. Department of Physics and Astronomy, Seoul National University, 1, Gwanak Road, Seoul 08826, Republic of Korea

7. Instituto de Astrnomía sede Ensenada, Universidad Nacinal Autónoma de México (IA-UNAM-E) Km 107, Carret. Tij.-Ens., 22860 Ensenada, BC, Mexico

8. Leibnitz Instituto für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

9. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

10. Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

11. Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan

12. Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095-1547, USA

13. Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK

14. RAL Space, STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, UK

15. The Open University, Milton Keynes MK7 6AA, UK

16. University of Oxford, Keble Rd, Oxford OX1 3RH, UK

17. Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea

18. Department of Earth Science Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

19. Department of Space and Astronautical Science, Graduate University for Advanced Studies, SOKENDAI, Shonankokusaimura, Hayama, Miura District, Kanagawa 240-0193, Japan

20. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

21. Inginiero Aeroespacial, Universidad Autónoma de Baja California, Blvd. Universitario 1000 Valle de Las Palmas, Tijuana, BC 22260, Mexico

Abstract

ABSTRACT To understand the cosmic accretion history of supermassive black holes, separating the radiation from active galactic nuclei (AGNs) and star-forming galaxies (SFGs) is critical. However, a reliable solution on photometrically recognizing AGNs still remains unsolved. In this work, we present a novel AGN recognition method based on Deep Neural Network (Neural Net; NN). The main goals of this work are (i) to test if the AGN recognition problem in the North Ecliptic Pole Wide (NEPW) field could be solved by NN; (ii) to show that NN exhibits an improvement in the performance compared with the traditional, standard spectral energy distribution (SED) fitting method in our testing samples; and (iii) to publicly release a reliable AGN/SFG catalogue to the astronomical community using the best available NEPW data, and propose a better method that helps future researchers plan an advanced NEPW data base. Finally, according to our experimental result, the NN recognition accuracy is around 80.29 per cent–85.15 per cent, with AGN completeness around 85.42 per cent–88.53 per cent and SFG completeness around 81.17 per cent–85.09 per cent.

Funder

Ministry of Science and Technology

Cicatricial Alopecia Research Foundation

Ministry of Education - Singapore

Universidad Nacional Autónoma de México

Consejo Nacional de Ciencia y Tecnología

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3