OzDES Reverberation Mapping Programme: Mg ii lags and RL relation

Author:

Yu Zhefu1ORCID,Martini Paul123,Penton A4ORCID,Davis T M45ORCID,Kochanek C S12,Lewis G F6ORCID,Lidman C57ORCID,Malik U8ORCID,Sharp R8,Tucker B E58,Aguena M9ORCID,Annis J10,Bertin E1112ORCID,Bocquet S13,Brooks D14,Carnero Rosell A91516ORCID,Carollo D517,Carrasco Kind M1819ORCID,Carretero J20ORCID,Costanzi M172122ORCID,da Costa L N9,Pereira M E S23,De Vicente J24ORCID,Diehl H T10,Doel P14,Everett S25,Ferrero I26ORCID,García-Bellido J27ORCID,Gatti M28,Gerdes D W2930,Gruen D13ORCID,Gruendl R A1819,Gschwend J931,Gutierrez G10,Hinton S R4ORCID,Hollowood D L32ORCID,Honscheid K233,James D J34,Kuehn K735,Mena-Fernández J24,Menanteau F1819,Miquel R2036,Nichol B37,Paz-Chinchón F1938,Pieres A931ORCID,Plazas Malagón A A39ORCID,Raveri M28,Romer A K40,Sanchez E24,Scarpine V10,Sevilla-Noarbe I24,Smith M41ORCID,Suchyta E42ORCID,Swanson M E C1434,Tarle G30,Vincenzi M4143,Walker A R44,Weaverdyck N3045ORCID

Affiliation:

1. Department of Astronomy, The Ohio State University , Columbus, OH 43210, USA

2. Center of Cosmology and Astro-Particle Physics, The Ohio State University , Columbus, OH 43210, USA

3. Radcliffe Institute for Advanced Study, Harvard University , Cambridge, MA 02138, USA

4. School of Mathematics and Physics, University of Queensland , Brisbane, QLD 4072, Australia

5. ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) , 44 Rosehill Street, Redfern, NSW 2016, Australia

6. Sydney Institute for Astronomy, School of Physics, The University of Sydney , A28, Sydney, NSW 2006, Australia

7. Australian Astronomical Observatory , North Ryde, NSW 2113, Australia

8. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611, Australia

9. Laboratório Interinstitucional de e-Astronomia-LIneA , Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil

10. Fermi National Accelerator Laboratory , P. O. Box 500, Batavia, IL 60510, USA

11. Institut d’Astrophysique de Paris, Sorbonne Universités , UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France

12. Institut d’Astrophysique de Paris, CNRS , UMR 7095, F-75014 Paris, France

13. University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität , Scheinerstraße 1, D-81679 Munich, Germany

14. Department of Physics & Astronomy, University College London , Gower Street, London WC1E 6BT, UK

15. Instituto de Astrofisica de Canarias , E-38205 La Laguna, Tenerife, Spain

16. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife, Spain

17. INAF-Osservatorio Astronomico di Trieste , via G. B. Tiepolo 11, I-34143 Trieste, Italy

18. Department of Astronomy, University of Illinois at Urbana-Champaign , 1002 W. Green Street, Urbana, IL 61801, USA

19. Center for Astrophysical Surveys, National Center for Supercomputing Applications , 1205 West Clark Street, Urbana, IL 61801, USA

20. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology , Campus UAB, E-08193 Bellaterra (Barcelona), Spain

21. Institute for Fundamental Physics of the Universe , via Beirut 2, I-34014 Trieste, Italy

22. Astronomy Unit, Department of Physics, University of Trieste , via Tiepolo 11, I-34131 Trieste, Italy

23. Hamburger Sternwarte, Universität Hamburg , Gojenbergsweg 112, D-21029 Hamburg, Germany

24. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , Avda. Complutense 40, E-28040 Madrid, Spain

25. Jet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr, Pasadena, CA 91109, USA

26. Institute of Theoretical Astrophysics, University of Oslo , P. O. Box 1029, Blindern, NO-0315 Oslo, Norway

27. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid , E-28049 Madrid, Spain

28. Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, PA 19104, USA

29. Department of Astronomy, University of Michigan , Ann Arbor, MI 48109, USA

30. Department of Physics, University of Michigan , Ann Arbor, MI 48109, USA

31. Observatório Nacional , Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil

32. Santa Cruz Institute for Particle Physics , Santa Cruz, CA 95064, USA

33. Department of Physics, The Ohio State University , Columbus, OH 43210, USA

34. Center for Astrophysics | Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USA

35. Lowell Observatory , 1400 Mars Hill Road, Flagstaff, AZ 86001, USA

36. Institució Catalana de Recerca i Estudis Avançats , E-08010 Barcelona, Spain

37. Department of Physics, University of Surrey , Guilford, Surrey, GU2 7XH, UK

38. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

39. Department of Astrophysical Sciences, Princeton University , Peyton Hall, Princeton, NJ 08544, USA

40. Department of Physics and Astronomy, University of Sussex , Pevensey Building, Brighton BN1 9QH, UK

41. School of Physics and Astronomy, University of Southampton , Southampton SO17 1BJ, UK

42. Computer Science and Mathematics Division, Oak Ridge National Laboratory , Oak Ridge, TN 37831, USA

43. Institute of Cosmology and Gravitation, University of Portsmouth , Portsmouth PO1 3FX, UK

44. Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory , Casilla 603, La Serena, 1700000, Chile

45. Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

ABSTRACT The correlation between the broad line region radius and continuum luminosity (R–L relation) of active galactic nuclei (AGNs) is critical for single-epoch mass estimates of supermassive black holes (SMBHs). At z ∼ 1–2, where AGN activity peaks, the R–L relation is constrained by the reverberation mapping (RM) lags of the Mg ii line. We present 25 Mg ii lags from the Australian Dark Energy Survey RM project based on 6 yr of monitoring. We define quantitative criteria to select good lag measurements and verify their reliability with simulations based on both the damped random walk stochastic model and the rescaled, resampled versions of the observed light curves of local, well-measured AGN. Our sample significantly increases the number of Mg ii lags and extends the R–L relation to higher redshifts and luminosities. The relative iron line strength $\mathcal {R}_{\rm Fe}$ has little impact on the R–L relation. The best-fitting Mg iiR–L relation has a slope α = 0.39 ± 0.08 with an intrinsic scatter $\sigma _{\rm rl} = 0.15^{+0.03}_{-0.02}$ . The slope is consistent with previous measurements and shallower than the H β R–L relation. The intrinsic scatter of the new R–L relation is substantially smaller than previous studies and comparable to the intrinsic scatter of the H β R–L relation. Our new R–L relation will enable more precise single-epoch mass estimates and SMBH demographic studies at cosmic noon.

Funder

Radcliffe Institute for Advanced Study, Harvard University

United States Department of Energy

National Science Foundation

Australian Research Council

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3