Star Formation in Self-gravitating Disks in Active Galactic Nuclei. III. Efficient Production of Iron and Infrared Spectral Energy Distributions

Author:

Wang Jian-MinORCID,Zhai Shuo,Li Yan-RongORCID,Songsheng Yu-YangORCID,Ho Luis C.ORCID,Chen Yong-JieORCID,Liu Jun-Rong,Du PuORCID,Yuan Ye-FeiORCID

Abstract

Abstract Strong iron lines are a common feature of the optical spectra of active galactic nuclei (AGNs) and quasars from z ∼ 6−7 to the local universe, and [Fe/Mg] ratios do not show cosmic evolution. During active episodes, accretion disks surrounding supermassive black holes (SMBHs) inevitably form stars in the self-gravitating part, and these stars accrete with high accretion rates. In this paper, we investigate the population evolution of accretion-modified stars (AMSs) to produce iron and magnesium in AGNs. The AMSs, as a new type of star, are allowed to have any metallicity but without significant loss from stellar winds, since the winds are choked by the dense medium of the disks and return to the core stars. Mass functions of the AMS population show a pile-up or cutoff pile-up shape in top-heavy or top-dominant forms if the stellar winds are strong, consistent with the narrow range of supernovae (SNe) explosions driven by the known pair-instability. This provides an efficient way to produce metals. Meanwhile, SN explosions support an inflated disk as a dusty torus. Furthermore, the evolving top-heavy initial mass functions lead to bright luminosity in infrared bands in dusty regions. This contributes a new component in infrared bands, which is independent of the emissions from the central part of accretion disks, appearing as a long-term trending of the NIR continuum compared to optical variations. Moreover, the model can be further tested through reverberation mapping of emission lines, including LIGO/LISA detections of gravitational waves and signatures from spatially resolved observations of GRAVITY+/VLTI.

Funder

MOST ∣ National Key Research and Development Program of China

NSFC ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3