Affiliation:
1. SIfA, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
Abstract
ABSTRACT
We propose and discuss an alternative pulsar radio emission mechanism that relies on rotation-driven plasma oscillations, rather than on a beam-driven instability, and suggest that it may be the generic radio emission mechanism for pulsars. We identify these oscillations as superluminal longitudinal waves in the pulsar plasma and point out that these waves can escape directly in the O mode. We argue that the frequency of the oscillations is ω0 ≈ ωp(2〈γ〉)1/2/γs, where γs is the Lorentz factor of bulk streaming motion and 〈γ〉 is the mean Lorentz factor in the rest frame of the plasma. The dependence of the plasma frequency ωp on radial distance implies a specific frequency-to-radius mapping, ω0∝r−3/2. Escape of the energy in these oscillations is possible if they are generated in overdense, field-aligned regions that we call fibres; the wave energy is initially refracted into underdense regions between the fibres, which act as ducts. Some implications of the model for the interpretation of pulsar radio emission are discussed.
Funder
Australian Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献