Pulsar Magnetospheres and Their Radiation

Author:

Philippov A.12,Kramer M.3

Affiliation:

1. Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA

2. Department of Physics, University of Maryland, College Park, Maryland, USA;

3. Max-Planck Institut für Radioastronomie, Bonn, Germany;

Abstract

The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3