On the evolution of vortex in locally isothermal self-gravitating discs: A parameter study

Author:

Tarczay-Nehéz D12,Rozgonyi K134ORCID,Regály Zs1

Affiliation:

1. Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary

2. MTA CSFK Lendület Near-Field Cosmology Group

3. International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA 6009, Australia

4. Australian Research Council, Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

Abstract

Abstract Gas rich dusty circumstellar discs observed around young stellar objects are believed to be the birthplace of planets and planetary systems. Recent observations revealed that large-scale horseshoe-like brightness asymmetries are present in dozens of transitional protoplanetary discs. Theoretical studies suggest that these brightness asymmetries bf could be caused by large-scale anticyclonic vortices triggered by the Rossby Wave Instability (RWI), which can be excited at the edges of the accretionally inactive region, the dead zone edge. Since vortices may play a key role in planet formation, investigating the conditions of the onset of RWI and the long-term evolution of vortices is inevitable. The aim of our work was to explore the effect of disc geometry (the vertical thickness of the disc), viscosity, the width of the transition region at the dead zone edge, and the disc mass on the onset, lifetime, strength and evolution of vortices formed in the disc. We performed a parametric study assuming different properties for the disc and the viscosity transition by running 1980 2D hydrodynamic simulations in the locally isothermal assumption with disc self-gravity included. Our results revealed that long-lived, large-scale vortex formation favours a shallow surface density slope and low- or moderate disc masses with Toomre Q ≲ 1/h, where h is the geometric aspect ratio of the disc. In general, in low viscosity models, stronger vortices form. However, rapid vortex decay and re-formation is more widespread in these discs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3