Planetary nurseries: vortices formed at smooth viscosity transition

Author:

Regály Zs12,Kadam K34ORCID,Tarczay-Nehéz D125

Affiliation:

1. Konkoly Observatory, Research Centre for Astronomy and Earth Science , Konkoly-Thege Miklós 15-17, 1121, Budapest , Hungary

2. CSFK, MTA Centre of Excellence , Budapest, Konkoly Thege Miklós út 15-17., H-1121 , Hungary

3. Space Research Institute, Austrian Academy of Sciences , Schmiedlstr. 6, A-8042, Graz , Austria

4. University of Western Ontario, Department of Physics and Astronomy , London, ON, N6A 3K7 , Canada

5. MTA CSFK Lendület Near-Field Cosmology Research Group , Budapest, Konkoly Thege Miklós út 15-17., H-1121 , Hungary

Abstract

ABSTRACT Excitation of Rossby wave instability and development of a large-scale vortex at the outer dead zone edge of protoplanetary discs is one of the leading theories that explains horseshoe-like brightness distribution in transition discs. Formation of such vortices requires a relatively sharp viscosity transition. Detailed modelling, however, indicates that viscosity transitions at the outer edge of the dead zone is relatively smooth. In this study, we present 2D global, non-isothermal, gas–dust coupled hydrodynamic simulations to investigate the possibility of vortex excitation at smooth viscosity transitions. Our models are based on a recently postulated scenario, wherein the recombination of charged particles on the surface of dust grains results in reduced ionization fraction and, in turn, the turbulence due to magnetorotational instability. Thus, the α-parameter for the disc viscosity depends on the local dust-to-gas mass ratio. We found that the smooth viscosity transitions at the outer edge of the dead zone can become Rossby unstable and form vortices. A single large-scale vortex develops if the dust content of the disc is well coupled to the gas; however, multiple small-scale vortices ensue for the case of less coupled dust. As both type of vortices are trapped at the dead zone outer edge, they provide sufficient time for dust growth. The solid content collected by the vortices can exceed several hundred Earth masses, while the dust-to-gas density ratio within often exceeds unity. Thus, such vortices function as planetary nurseries within the disc, providing ideal sites for formation of planetesimals and eventually planetary systems.

Funder

NSERC

Hungarian Academy of Sciences

NKFIH

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction to: Planetary nurseries: vortices formed at smooth viscosity transition;Monthly Notices of the Royal Astronomical Society;2023-12-23

2. Size-dependent charging of dust particles in protoplanetary disks;Astronomy & Astrophysics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3