Improved statistic to identify strongly lensed gravitational wave events

Author:

More Anupreeta12ORCID,More Surhud12

Affiliation:

1. The Inter-University Centre for Astronomy and Astrophysics (IUCAA) , Post Bag 4, Ganeshkhind, Pune 411007, India

2. Kavli Institute for the Physics and Mathematics of the Universe (IPMU) , 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583, Japan

Abstract

ABSTRACT As the number of detected gravitational wave sources increases with increased sensitivity of the gravitational wave observatories, observing strongly lensed pairs of events will become a real possibility. Lensed gravitational wave (GW) events will have very accurately measured time delays and magnification ratios. Suppose we identify the lens system corresponding to a GW event in the electromagnetic domain and also measure the redshifts of the lens and the host galaxy; in that case, we can use the GW event to constrain important astrophysical parameters of the lens system. As most lensing events have image separations that are significantly smaller than the GW event localization uncertainties, we must develop diagnostics that will aid in the robust identification of such lensed events. We define a new statistic based on the joint probability of lensing observables that can be used to discriminate lensed pairs of events from the unlensed ones. To this end, we carry out simulations of lensed GW events to infer the distribution of the relative time delays and relative magnifications subdivided by the type of lensed images. We compare this distribution to a similar one obtained for random unlensed event pairs. Our statistic can improve the search pipelines’ existing ranking approach to down-select event pairs for joint parameter estimates. The distributions we obtain can further be used to define more informative priors in joint parameter estimation analyses for candidate lensed events.

Funder

National Science Foundation

Science and Technology Facilities Council

CNRS

INFN

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Ministry of Science and ICT, South Korea

Academia Sinica

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3