Exploring the impact of microlensing on gravitational wave signals: Biases, population characteristics, and prospects for detection

Author:

Mishra Anuj1ORCID,Meena Ashish Kumar2ORCID,More Anupreeta13ORCID,Bose Sukanta14

Affiliation:

1. The Inter-University Centre for Astronomy and Astrophysics (IUCAA) , Post Bag 4, Ganeshkhind, Pune 411007 , India

2. Physics department, Ben Gurion University of the Negev , PO Box 653, Be’er-Sheva 84105 , Israel

3. Kavli Institute for the Physics and Mathematics of the Universe (IPMU) , 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 , Japan

4. Department of Physics & Astronomy, Washington State University , Pullman, WA 99164 , USA

Abstract

ABSTRACT In this study, we investigate the impact of microlensing on gravitational wave (GW) signals in the LIGO−Virgo sensitivity band. Microlensing caused by an isolated point lens, with (redshifted) mass ranging from MLz ∈ (1,  105) M⊙ and impact parameter y ∈ (0.01,  5), can result in a maximum mismatch of $\sim 30~{{\ \rm per\ cent}}$ with their unlensed counterparts. When y < 1, it strongly anticorrelates with the luminosity distance enhancing the detection horizon and signal-to-noise ratio (SNR). Biases in inferred source parameters are assessed, with in-plane spin components being the most affected intrinsic parameters. The luminosity distance is often underestimated, while sky-localization and trigger times are mostly well-recovered. Study of a population of microlensed signals due to an isolated point lens primarily reveals: (i) using unlensed templates during the search causes fractional loss (20 per cent to 30 per cent) of potentially identifiable microlensed signals; (ii) the observed distribution of y challenges the notion of its high improbability at low values (y ≲ 1), especially for y ≲ 0.1; (iii) Bayes factor analysis of the population indicates that certain region in MLz − y parameter space have a higher probability of being detected and accurately identified as microlensed. Notably, the microlens parameters for the most compelling candidate identified in previous microlensing searches, GW200208_130117, fall within a 1σ range of the aforementioned higher probability region. Identifying microlensing signatures from MLz < 100 M⊙ remains challenging due to small microlensing effects at typical SNR values. Additionally, we also examined how microlensing from a population of microlenses influences the detection of strong lensing signatures in pairs of GW events, particularly in the posterior-overlap analysis.

Funder

UGC

United States-Israel Binational Science Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3