A novel CMB component separation method: hierarchical generalized morphological component analysis

Author:

Wagner-Carena Sebastian12ORCID,Hopkins Max34,Diaz Rivero Ana1,Dvorkin Cora1

Affiliation:

1. Department of Physics, Harvard University, Cambridge, MA 02138, USA

2. Department of Physics, Stanford University, Stanford, CA 94305, USA

3. Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

4. Department of Computer Science and Engineering, University of California San Diego, San Diego, CA 92092, USA

Abstract

ABSTRACT We present a novel technique for cosmic microwave background (CMB) foreground subtraction based on the framework of blind source separation. Inspired by previous work incorporating local variation to generalized morphological component analysis (GMCA), we introduce hierarchical GMCA (HGMCA), a Bayesian hierarchical graphical model for source separation. We test our method on Nside = 256 simulated sky maps that include dust, synchrotron, free–free, and anomalous microwave emission, and show that HGMCA reduces foreground contamination by $25{{\ \rm per\ cent}}$ over GMCA in both the regions included and excluded by the Planck UT78 mask, decreases the error in the measurement of the CMB temperature power spectrum to the 0.02–0.03 per cent level at ℓ > 200 (and $\lt 0.26{{\ \rm per\ cent}}$ for all ℓ), and reduces correlation to all the foregrounds. We find equivalent or improved performance when compared to state-of-the-art internal linear combination type algorithms on these simulations, suggesting that HGMCA may be a competitive alternative to foreground separation techniques previously applied to observed CMB data. Additionally, we show that our performance does not suffer when we perturb model parameters or alter the CMB realization, which suggests that our algorithm generalizes well beyond our simplified simulations. Our results open a new avenue for constructing CMB maps through Bayesian hierarchical analysis.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pulmonary Nodule Spiculation Recognition Algorithm Based on Generative Adversarial Networks;BioMed Research International;2022-06-24

2. Improved galactic foreground removal for B-mode detection with clustering methods;Monthly Notices of the Royal Astronomical Society;2022-01-12

3. Weak-lensing mass reconstruction using sparsity and a Gaussian random field;Astronomy & Astrophysics;2021-05

4. Mitigating contamination in LSS surveys: a comparison of methods;Monthly Notices of the Royal Astronomical Society;2021-03-13

5. Hierarchical Bayesian CMB component separation with the No-U-Turn Sampler;Monthly Notices of the Royal Astronomical Society;2020-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3