A Pulmonary Nodule Spiculation Recognition Algorithm Based on Generative Adversarial Networks

Author:

Zhang Jing1ORCID,Qiu Shi2ORCID,Cui Xiaohai1ORCID,Liang Ting34ORCID

Affiliation:

1. Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

2. Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China

3. Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

4. Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China

Abstract

Pulmonary nodules have been found as the main pathological change in the lung. Signs of pulmonary nodule lay the major basis for the recognition of the benign and malignant of pulmonary nodules. The spiculation of pulmonary nodules is one of the main signs. Pulmonary nodules are small in volume, so they are difficult to extract accurately. Moreover, the number of spiculation samples is limited, so it is difficult to build a stable network structure. Thus, a novel pulmonary nodule spiculation recognition algorithm is proposed. MCA (morphological component analysis) model is built to segment pulmonary nodules in accordance with the composition of pulmonary CT images. Subsequently, the maximum density projection mechanism is introduced to characterize the boundary features of pulmonary nodules to the maximum extent. Inspired by time series dynamic programming, this paper proposes DTW (dynamic time warping) distance to measure data similarity. Lastly, a semisupervised generative adversarial network is built to solve the problem of insufficient positive samples, and it is capable of recognizing pulmonary nodule spiculation. As revealed by the experimental result, the proposed algorithm exhibited strong robustness.

Funder

Science and Technology Rising Star of Shaanxi Youth

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3