Resonant damping and instability of propagating kink waves in flowing and twisted magnetic flux tubes

Author:

Bahari K1ORCID,Petrukhin N S2,Ruderman M S345

Affiliation:

1. Physics Department, Faculty of Science, Razi University, Kermanshah 6714414971, Iran

2. Higher School of Economics, National Research University, Moscow 101000, Russia

3. School of Mathematics and Statistics (SoMaS), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

4. Departiment of Planetary Physics, Space Research Institute, Russian Academy of Sciences (IKI), Moscow 117997, Russia

5. Moscow Center for Fundamental and Applied Mathematics , Lomonosov Moscow State University,GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract

ABSTRACT We study the propagation and stability of kink waves in a twisted magnetic tube with the flow. The flow velocity is assumed to be parallel to the magnetic field, and the magnetic field lines are straight outside the tube. The density is constant inside and outside of the tube, and it monotonically decreases from its value inside the tube to that outside in the transitional or boundary layer. The flow speed and magnetic twist monotonically decrease in the transitional layer from their values inside the tube to zero outside. Using the thin tube and thin boundary layer (TTTB) approximation, we derived the dispersion equation determining the dependence of the wave frequency and decrement/increment on the wavenumber. When the kink wave frequency coincides with the local Alfvén frequency at a resonant surface inside the transitional layer, the kink wave is subjected to either resonant damping or resonant instability. We study the properties of kink waves in a particular unperturbed state where there is no flow and magnetic twist in the transitional layer. It is shown that in a tube with flow, the kink waves can propagate without damping for particular values of the flow speed. Kink waves propagating in the flow direction either damp or propagate without damping. Waves propagating in the opposite direction can either propagate without damping, or damp, or become unstable. The theoretical results are applied to the problem of excitation of kink waves in spicules and filaments in the solar atmosphere.

Funder

Russian Fund for Fundamental Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3