Observable spectral and angular distributions of γ-rays from extragalactic ultrahigh energy cosmic ray accelerators: the case of extreme TeV blazars

Author:

Khalikov Emil V1,Dzhatdoev Timur A12ORCID

Affiliation:

1. Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU), 1(2), Leninskie gory, GSP-1, 119991 Moscow, Russia

2. Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, 277-8568 Kashiwa, Japan

Abstract

ABSTRACT Ultrahigh energy protons and nuclei from extragalactic cosmic ray sources initiate intergalactic electromagnetic cascades, resulting in observable fluxes of γ-rays in the GeV–TeV energy domain. The total spectrum of such cascade γ-rays of hadronic nature is significantly harder than the one usually expected from blazars. The spectra of some sources known as ‘extreme TeV blazars’ could be well-described by this ‘intergalactic hadronic cascade model’ (IHCM). We calculate the shape of the observable point-like spectrum, as well as the observable angular distibution of γ-rays, for the first time taking into account the effect of primary proton deflection in filaments and galaxy clusters of the extragalactic magnetic field assuming the model of Dolag et al. (2005). We present estimates of the width of the observable γ-ray angular distribution derived from simple geometrical considerations. We also employ a hybrid code to compute the observable spectral and angular distributions of γ-rays. The observable point-like spectrum at multi-TeV energies is much softer than the one averaged over all values of the observable angle. The presence of a high-energy cutoff in the observable spectra of extreme TeV blazars in the framework of the IHCM could significantly facilitate future searches of new physics processes that enhance the apparent γ-ray transparency of the Universe (for instance, γ → ALP oscillations). The width of the observable angular distribution is greater than or comparable to the extent of the point spread function of next-generation γ-ray telescopes.

Funder

University of Tokyo

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3