How are gamma-ray burst radio afterglows populated?

Author:

Zhang K12,Zhang Z B1,Huang Y F3,Song L M2,Zheng S J2,Li X J1,Li D45ORCID,Su F F1

Affiliation:

1. College of Physics and Engineering, Qufu Normal University, Qufu 273165, China

2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049, China

3. School of Astronomy and Space Science, Nanjing University,Nanjing 210023, China

4. National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, China

5. NAOC-UKZN Computational Astrophysics Centre, University of KwaZulu-Natal, Durban 4000, South Africa

Abstract

ABSTRACT We systematically analyse two GRB samples with radio-loud and radio-quiet afterglows, respectively. It is interestingly found that the radio-selected GRB samples exhibit a clear dichotomy in terms of their distributions of intrinsic durations (Tint), isotropic energies in γ-rays (Eγ, iso), the circum-burst medium density (n), the spectral radio peak luminosity (Lν, p) and flux densities (Fhost) of host galaxies. On average, the values of Tint, Eγ, iso, n, Lν, p, and Fhost of radio-quiet GRBs are relatively smaller than those of radio-loud ones. However, the redshifts and host flux densities of both samples are similarly distributed. In addition, a positive power-law correlation of $L_{\nu ,p}\propto E_{\gamma ,\rm iso}^{0.41\pm 0.04}$ is found for the radio-loud sample, especially in accord with the supernova-associated GRBs, which is marginally consistent with that of the radio-quiet GRB sample. A negative correlation between Tint and z is confirmed to similarly hold for both radio-loud and radio-quiet GRBs. The dividing line between short and long GRBs in the rest frame is at Tint ≃1 s. Consequently, we propose that the radio-selected GRBs could be originated from distinct progenitors and central engines, together with environments.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3