Reclassifying Swift Gamma-Ray Bursts with Diverse Duration Distributions

Author:

Deng Q.,Zhang Z.-B.ORCID,Li X.-J.,Chang H.-Y.,Zhang X.-L.,Zhen H.-Y.,Sun H.,Pan Q.,Dong X.-F.

Abstract

Abstract We select the largest sample of Swift gamma-ray bursts (GRBs) so far to reexamine the classification in terms of time duration, hardness ratio, and physical collapse model. To analyze the sample selection effect, we divide the observed Swift GRB sample into four subsamples according to signal-to-noise level, spectral quality, and extended emission. First, we find that only the sample of Swift GRBs with well-measured peak energy can be evidently divided into two types at a boundary of ∼1 s, and other data sets are well described by three Gaussian functions. Using Swift GRBs with known redshift, a Kolmogorov–Smirnov test shows the intrinsic duration distributions of five data sets are equally distributed. Second, we ascertain in the plane of hardness ratio versus duration that the hardness ratio of short GRBs is significantly higher than those of middle classes and long GRBs, while the latter two components are the same in statistics, implying the so-called middle class to be artificial. Third, we apply a collapse model to discriminate the boundaries between collapse and noncollapse Swift bursts. It is interesting to find that a significant fraction, ≥30%, of Swift short GRBs could have originated from the collapsing progenitors, while all long GRBs are produced from the collapsars only. Finally, we point out that short GRBs with extended emission are the main contributors to the noncollapsar population with longer duration.

Funder

National Natural Science Foundation of China

Shandong Natural Science foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3