The parameter-level performance of covariance matrix conditioning in cosmic microwave background data analyses

Author:

Balkenhol L1ORCID,Reichardt C L1ORCID

Affiliation:

1. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

Abstract

ABSTRACT Empirical estimates of the band power covariance matrix are commonly used in cosmic microwave background (CMB) power spectrum analyses. While this approach easily captures correlations in the data, noise in the resulting covariance estimate can systematically bias the parameter fitting. Conditioning the estimated covariance matrix, by applying prior information on the shape of the eigenvectors, can reduce these biases and ensure the recovery of robust parameter constraints. In this work, we use simulations to benchmark the performance of four different conditioning schemes, motivated by contemporary CMB analyses. The simulated surveys measure the TT, TE, and EE power spectra over the angular multipole range 300 ≤ ℓ ≤ 3500 in Δℓ = 50 wide bins, for temperature map-noise levels of 10, 6.4, and $2\, \mu$K arcmin. We divide the survey data into Nreal = 30, 50, or 100 uniform subsets. We show the results of different conditioning schemes on the errors in the covariance estimate, and how these uncertainties on the covariance matrix propagate to the best-fitting parameters and parameter uncertainties. The most significant effect we find is an additional scatter in the best-fitting point, beyond what is expected from the data likelihood. For a minimal conditioning strategy, Nreal = 30, and a temperature map-noise level of 10$\, \mu$K arcmin, we find the uncertainty on the recovered best-fitting parameter to be ×1.3 larger than the apparent posterior width from the likelihood (×1.2 larger than the uncertainty when the true covariance is used). Stronger priors on the covariance matrix reduce the misestimation of parameter uncertainties to $\lt 1{{\ \rm per\ cent}}$. As expected, empirical estimates perform better with higher Nreal, ameliorating the adverse effects on parameter constraints.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3