CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations

Author:

Chartier Nicolas12,Wandelt Benjamin23,Akrami Yashar14ORCID,Villaescusa-Navarro Francisco35

Affiliation:

1. Laboratoire de Physique de l’École Normale Supérieure, ENS, Universite PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France

2. Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

3. Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

4. Observatoire de Paris, Université PSL, Sorbonne Université, LERMA, F-75014 Paris, France

5. Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, NJ 08544, USA

Abstract

ABSTRACT To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computational cost. Therefore, approximate but fast simulations, surrogates, are widely used to gain speed at the price of introducing model error. We propose a general method that exploits the correlation between simulations and surrogates to compute fast, reduced-variance statistics of large-scale structure observables without model error at the cost of only a few simulations. We call this approach Convergence Acceleration by Regression and Pooling (CARPool). In numerical experiments with intentionally minimal tuning, we apply CARPool to a handful of gadget-iii  N-body simulations paired with surrogates computed using COmoving Lagrangian Acceleration. We find ∼100-fold variance reduction even in the non-linear regime, up to $k_\mathrm{max} \approx 1.2\, h {\rm Mpc^{-1}}$ for the matter power spectrum. CARPool realizes similar improvements for the matter bispectrum. In the nearly linear regime CARPool attains far larger sample variance reductions. By comparing to the 15 000 simulations from the Quijote suite, we verify that the CARPool estimates are unbiased, as guaranteed by construction, even though the surrogate misses the simulation truth by up to $60{{\ \rm per\ cent}}$ at high k. Furthermore, even with a fully configuration-space statistic like the non-linear matter density probability density function, CARPool achieves unbiased variance reduction factors of up to ∼10, without any further tuning. Conversely, CARPool can be used to remove model error from ensembles of fast surrogates by combining them with a few high-accuracy simulations.

Funder

Université de Recherche Paris Sciences et Lettres

Agence Nationale de la Recherche

Labex

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3