Improving the accuracy of halo mass based statistics for fast approximate N-body simulations

Author:

Wu Yiheng123ORCID,Guo Hong1,Springel Volker3

Affiliation:

1. Shanghai Astronomical Observatory, Chinese Academy of Sciences , Shanghai 200030 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Straße 1, D-85740 Garching bei München , Germany

Abstract

ABSTRACT Approximate N-body methods, such as fastpm and cola, have been successful in modelling halo and galaxy clustering statistics, but their low resolution on small scales is a limitation for applications that require high precision. Full N-body simulations can provide better accuracy but are too computationally expensive for a quick exploration of cosmological parameters. This paper presents a method for correcting distinct haloes identified in fast N-body simulations, so that various halo statistics improve to a percent level accuracy. The scheme seeks to find empirical corrections to halo properties such that the virial mass is the same as that of a corresponding halo in a full N-body simulation. The modified outer density contour of the corrected halo is determined on the basis of the fastpm settings and the number of particles inside the halo. This method only changes some parameters of the halo finder, and does not require any extra CPU-cost. We demonstrate that the adjusted halo catalogues of fastpm simulations significantly improve the precision of halo mass-based statistics from redshifts $z=0.0$ to 1.0, and that our calibration can be applied to different cosmologies without needing to be recalibrated.

Funder

CAS

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3