Stratified disc wind models for the AGN broad-line region: ultraviolet, optical, and X-ray properties

Author:

Matthews James H12ORCID,Knigge Christian3,Higginbottom Nick3ORCID,Long Knox S45,Sim Stuart A6,Mangham Samuel W3,Parkinson Edward J3,Hewitt Henrietta A6

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2. Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

3. School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK

4. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

5. Eureka Scientific Inc., 2542 Delmar Avenue, Suite 100, Oakland, CA 94602-3017, USA

6. School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK

Abstract

ABSTRACT The origin, geometry, and kinematics of the broad-line region (BLR) gas in quasars and active galactic nuclei (AGN) are uncertain. We demonstrate that clumpy biconical disc winds illuminated by an AGN continuum can produce BLR-like spectra. We first use a simple toy model to illustrate that disc winds make quite good BLR candidates, because they are self-shielded flows and can cover a large portion of the ionizing flux-density (ϕH-nH) plane. We then conduct Monte Carlo radiative transfer and photoionization calculations, which fully account for self-shielding and multiple scattering in a non-spherical geometry. The emergent model spectra show broad emission lines with equivalent widths and line ratios comparable to those observed in AGN, provided that the wind has a volume filling factor of fV ≲ 0.1. Similar emission line spectra are produced for a variety of wind geometries (polar or equatorial) and for launch radii that differ by an order of magnitude. The line emission arises almost exclusively from plasma travelling below the escape velocity, implying that ‘failed winds’ are important BLR candidates. The behaviour of a line-emitting wind (and possibly any ‘smooth flow’ BLR model) is similar to that of the locally optimally emitting cloud model originally proposed by Baldwin et al. (1995), except that the gradients in ionization state and temperature are large-scale and continuous, rather than within or between distinct clouds. Our models also produce UV absorption lines and X-ray absorption features, and the stratified ionization structure can partially explain the different classes of broad absorption line quasars.

Funder

Science and Technology Facilities Council

NASA

EPSRC

Next Generation Computational Modelling

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3