Study of the optical to X-ray broad emission lines of Mrk 110

Author:

Juráňová A.ORCID,Costantini E.ORCID,Di Gesu L.ORCID,Ebrero J.ORCID,Kaastra J.ORCID,Korista K.ORCID,Kriss G. A.ORCID,Mehdipour M.ORCID,Piconcelli E.ORCID,Rogantini D.ORCID

Abstract

Aims. In order to shed light on the characteristics of the broad line region (BLR) in a narrow-line Seyfert 1 galaxy, we present an analysis of X-ray, UV, and optical spectroscopic observations of the broad emission lines in Mrk 110. Methods. For the broad-band modelling of the emission-line luminosity, we adopt the “locally optimally emitting cloud” approach, which allows us to place constraints on the gas radial and density distribution. By exploring additional environmental effects, we investigate the possible scenarios resulting in the observed spectra. Results. We find that the photoionised gas in Mrk 110 responsible for the UV emission can fully account for the observed low-ionisation X-ray lines. The overall ionisation of the gas is lower, and one radial power-law distribution with a high integrated covering fraction Cf ≈ 0.5 provides an acceptable description of the emission lines spanning from X-rays to the optical band. The BLR is likely more compact than the broad-line Seyfert 1s studied so far, extending from ∼1016 to ∼1018 cm, and limited by the dust sublimation radius at the outer edge. Despite the large colour excess predicted by the Balmer ratio, the best fit suggests E(B − V)≈0.03 for both the ionising luminosity and the BLR, indicating that extinction might be uniform over a range of viewing angles. While the adopted data-modelling technique does not allow us to place constraints on the geometry of the BLR, we show that the addition of models with a clumpy, equatorial, wind-like structure may lead to a better description of the observed spectra.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3