Towards a better understanding of ice mantle desorption by cosmic rays

Author:

Rawlings Jonathan M C1ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, UK

Abstract

ABSTRACT The standard model of cosmic ray heating-induced desorption of interstellar ices is based on a continuous representation of the sporadic desorption of ice mantle components from classical ($0.1\, \mu$m) dust grains. This has been re-evaluated and developed to include tracking the desorption through (extended) grain cooling profiles, consideration of grain size-dependencies and constraints to the efficiencies. A model was then constructed to study the true, sporadic, nature of the process with possible allowances from species co-desorption and whole mantle desorption from very small grains. The key results from the study are that the desorption rates are highly uncertain, but almost certainly significantly larger than have been previously determined. For typical interstellar grain size distributions it is found that the desorption is dominated by the contributions from the smallest grains. The sporadic desorption model shows that, if the interval between cosmic ray impacts is comparable to, or less than, the freeze-out time-scale, the continuous representation is inapplicable; chemical changes may occur on very long time-scales, resulting in strong gas phase chemical enrichments that have very non-linear dependences on the cosmic ray flux. The inclusion of even limited levels of species co-desorption and/or the contribution from very small grains further enhances the rates, especially for species such as H2O. In general, we find that cosmic ray heating is the dominant desorption mechanism in dark environments. These results may have important chemical implications for protostellar and protoplanetary environments.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3